Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs
نویسندگان
چکیده
Correlated evolution of traits can act synergistically to facilitate organism function. But, what happens when constraints exist on the evolvability of some traits, but not others? The orb web was a key innovation in the origin of >12,000 species of spiders. Orb evolution hinged upon the origin of novel spinning behaviors and innovations in silk material properties. In particular, a new major ampullate spidroin protein (MaSp2) increased silk extensibility and toughness, playing a critical role in how orb webs stop flying insects. Here, we show convergence between pseudo-orb-weaving Fecenia and true orb spiders. As in the origin of true orbs, Fecenia dragline silk improved significantly compared to relatives. But, Fecenia silk lacks the high compliance and extensibility found in true orb spiders, likely due in part to the absence of MaSp2. Our results suggest how constraints limit convergent evolution and provide insight into the evolution of nature's toughest fibers.
منابع مشابه
Reconstructing web evolution and spider diversification in the molecular era.
The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and...
متن کاملSequential origin in the high performance properties of orb spider dragline silk
Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider p...
متن کاملEvolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
Spider silk is a promising biomaterial with impressive performance. However, some spider silks also 'supercontract' when exposed to water, shrinking by up to ∼50% in length. Supercontraction may provide a critical mechanism to tailor silk properties, both for future synthetic silk production and by the spiders themselves. Several hypotheses are proposed for the mechanism and function of superco...
متن کاملPhylogenomic Analysis of Spiders Reveals Nonmonophyly of Orb Weavers
Spiders constitute one of the most successful clades of terrestrial predators. Their extraordinary diversity, paralleled only by some insects and mites, is often attributed to the use of silk, and, in one of the largest lineages, to stereotyped behaviors for building foraging webs of remarkable biomechanical properties. However, our understanding of higher-level spider relationships is poor and...
متن کاملHow Did the Spider Cross the River? Behavioral Adaptations for River-Bridging Webs in Caerostris darwini (Araneae: Araneidae)
BACKGROUND Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals' "extended phenotypes". In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin's bark spider (Caerostris dar...
متن کامل